CALCULATED COLUMS AND DAX MEASURES

1 Calculated Columns

1.1 OWID Dataset compact.csv:

1) Population Category

Classifies each country based on total population size: Small (<10M), Medium (10M–100M), or Large (>100M).

```
Population Category =
SWITCH(
    TRUE(),
    OWID_Compact[population] <= 10000000, "Small",
    OWID_Compact[population] <= 100000000, "Medium",
    OWID_Compact[population] > 100000000, "Large"
```

2) Population Density Category

Groups countries by population density: Low (<100), Medium (100–500), or High (>500).

```
Population Density Category =
SWITCH(
    TRUE(),
    OWID_Compact[population_density] <= 100, "Low",
    OWID_Compact[population_density] <= 500, "Medium",
    OWID_Compact[population_density] > 500, "High"
)
```

3) Demographic Structure

Categorizes countries as having a young, balanced, or aging population based on median age and life expectancy.

```
Demographic Structure =
SWITCH(
   TRUE(),
   OWID_Compact[median_age] < 25 || OWID_Compact[life_expectancy] < 70, "Young
population",
   OWID_Compact[median_age] >= 25 && OWID_Compact[median_age] <= 40 &&
OWID_Compact[life_expectancy] >= 70 && OWID_Compact[life_expectancy] <= 78, "Balanced
population",
   OWID_Compact[median_age] > 40 || OWID_Compact[life_expectancy] > 78, "Aging
population",
   "Unknown"
)
```

4) GDP per Capita Category

Segments countries by GDP per capita: Low (<4000), Middle (4000–15000), or High (>15000).

```
GDP per Capita Category =
SWITCH(
    TRUE(),
    OWID_Compact[gdp_per_capita] < 4000, "Low",
    OWID_Compact[gdp_per_capita] >= 4000 && OWID_Compact[gdp_per_capita] <= 15000, "Middle",
    OWID_Compact[gdp_per_capita] > 15000, "High",
    "Unknown"
```

1.2 OWID Dataset vaccinations_manufacturer.csv:

1) Daily Doses

Calculates the number of vaccine doses administered daily by subtracting the cumulative value from the previous day.

```
Daily Doses =
VAR CurrentCountry = OWID_Vacc[country]
VAR CurrentVaccine = OWID_Vacc[vaccine]
VAR CurrentDate = OWID_Vacc[date]
VAR PreviousDayValue =
CALCULATE(
            MAX(OWID_Vacc[total_vaccinations]),
            FILTER(
                OWID_Vacc,
                OWID_Vacc[country] = CurrentCountry &&
                OWID_Vacc[country] = CurrentVaccine &&
                OWID_Vacc[vaccine] = CurrentVaccine &&
                OWID_Vacc[date] = CurrentDate - 1
                )
            )
RETURN
IF(
            ISBLANK(PreviousDayValue),
            BLANK(),
            OWID_Vacc[total_vaccinations] - PreviousDayValue
)
```

1.3 VAERS Dataset data.csv:

1) Days from Vaccination to Death

Measures the number of days between vaccination and death to analyze delay patterns in fatal events.

```
Days from Vaccination to Death =
VAR diff = DATEDIFF(VAERS_Data[VAX_DATE], VAERS_Data[DATEDIED], DAY)
RETURN IF(diff >= 0, diff, BLANK())
```

2) Days from Onset to Death

Calculates the time from symptom onset to death for a more clinical view of disease progression.

```
Days from Onset to Death =
VAR diff = DATEDIFF(VAERS_Data[ONSET_DATE], VAERS_Data[DATEDIED], DAY)
RETURN IF(diff >= 0, diff, BLANK())
```

3) Age Category

Groups patients into Child, Young Adult, Adult, or Senior based on their age in years.

```
Age Category =
SWITCH(
    TRUE(),
    ISBLANK(VAERS_Data[AGE_YRS]), BLANK(),
    VAERS_Data[AGE_YRS] <= 17, "Child",
    VAERS_Data[AGE_YRS] <= 44, "Young adult",
    VAERS_Data[AGE_YRS] <= 64, "Adult",
    VAERS_Data[AGE_YRS] >= 65, "Senior",
    BLANK()
)
```

4) Hospital Stay Category

Categorizes hospital stays as Short (≤2 days), Medium (3–7 days), or Long (>7 days) based on HOSPDAYS.

```
Hospital Stay Category =
SWITCH(
    TRUE(),
    ISBLANK(VAERS_Data[HOSPDAYS]), BLANK(),
    VAERS_Data[HOSPDAYS] <= 2, "Short",
    VAERS_Data[HOSPDAYS] <= 7, "Medium",
    VAERS_Data[HOSPDAYS] > 7, "Long",
    BLANK()
)
```

1.4 VAERS Dataset symptoms:

Symptom Unpivoting (this is not a calculated column)

Converts columns SYMPTOM1–SYMPTOM5 into a single column called Symptom, allowing aggregation and ranking by frequency.

1.5 VAERS Dataset vax.csv:

1) Dose Category

Classifies the vaccine dose as First dose, Second dose, or Booster based on the dose sequence reported.

Dose Category =

```
SWITCH(
    TRUE(),
    VALUE(VAERS_VAX[VAX_DOSE_SERIES]) = 1, "First dose",
    VALUE(VAERS_VAX[VAX_DOSE_SERIES]) = 2, "Second dose",
    VALUE(VAERS_VAX[VAX_DOSE_SERIES]) >= 3, "Booster",
    "Unknown"
)
```

2 Dax Measures

1.1 OWID Dataset compact.csv:

A) Time Intelligence Measures

These measures compare current values to the same period last year (LY) or aggregate values year-to-date (YTD) for key COVID-19 indicators.

1) Total Cases LY

```
Total Cases LY =
CALCULATE(
   SUM(OWID_Compact[new_cases_smoothed]),
   SAMEPERIODLASTYEAR(dim_calendar[date])
)
```

2) Total Cases YTD

```
Total Cases YTD =
CALCULATE(
   SUM(OWID_Compact[new_cases_smoothed]),
   DATESYTD(dim_calendar[date])
  )
```

3) Avg. Deaths per Million LY

```
Avg. Deaths per Million LY =
CALCULATE(
AVERAGE(OWID_Compact[new_deaths_per_million]),
SAMEPERIODLASTYEAR(dim_calendar[date])
)
```

4) Avg. Deaths per Million YTD

```
Avg. Deaths per Million YTD =
CALCULATE(
    AVERAGE(OWID_Compact[new_deaths_per_million]),
    DATESYTD(dim_calendar[date])
)
```

5) Total Tests LY

```
Total Tests LY =
CALCULATE(
   SUM(OWID_Compact[new_tests_smoothed]),
   SAMEPERIODLASTYEAR(dim_calendar[date])
)
```

6) Total Tests YTD

```
Total Tests YTD =
CALCULATE(
   SUM(OWID_Compact[new_tests_smoothed]),
   DATESYTD(dim_calendar[date])
)
```

7) Total Vaccinations LY

```
Total Vaccinations LY =
CALCULATE(
   SUM(OWID_Compact[new_vaccinations_smoothed]),
   SAMEPERIODLASTYEAR(dim_calendar[date])
)
```

8) Total Vaccinations YTD

```
Total Vaccinations YTD =
CALCULATE(
    SUM(OWID_Compact[new_vaccinations_smoothed]),
    DATESYTD(dim_calendar[date])
)
```

9) Avg. Cases per Million LY

```
Avg. Cases per Million LY =
CALCULATE(
    AVERAGE(OWID_Compact[new_cases_smoothed_per_million]),
    SAMEPERIODLASTYEAR(dim_calendar[date])
)
```

10) Avg. Cases per Million YTD

```
Avg. Cases per Million YTD =
CALCULATE(
    AVERAGE(OWID_Compact[new_cases_smoothed_per_million]),
    DATESYTD(dim_calendar[date])
)
```

B) Aggregated Totals

These simple SUM functions return the total number of cases, deaths, vaccinations, and tests over the entire period.

1) Total Cases

Total Cases =
SUM(OWID_Compact[new_cases_smoothed])

2) Total Deaths

```
Total Deaths =
SUM(OWID_Compact[new_deaths])
```

3) Total Vaccinations

Total Vaccinations =
SUM(OWID_Compact[new_vaccinations_smoothed])

4) Total Tests

```
Total Tests =
SUM(OWID_Compact[new_tests_smoothed])
```

C) Aggregated Values for Analysis

These averages enable country-level and time-based comparisons across all major COVID indicators, healthcare capacity, and response effectiveness.

1) Average New Cases Smoothed

```
Average New Cases Smoothed =
AVERAGE(OWID_Compact[new_cases_smoothed])
```

2) Average New Deaths

```
Average New Deaths =
AVERAGE(OWID_Compact[new_deaths])
```

3) Average New Cases Smoothed per Million

```
Average New Cases Smoothed per Million =
AVERAGE(OWID_Compact[new_cases_smoothed_per_million])
```

4) Average Daily Deaths per Million

```
Average Daily Deaths per Million =
AVERAGE(OWID_Compact[new_deaths_per_million])
```

5) Average ICU Patients

Average ICU Patients =

AVERAGE(OWID_Compact[icu_patients])

6) Average Weekly Hospital Admissions per Million

Average Weekly Hospital Admissions per Million = AVERAGE(OWID_Compact[weekly_hosp_admissions_per_million])

7) Average Stringency Index

```
Average Stringency Index =
AVERAGE(OWID_Compact[stringency_index])
```

8) Average Reproduction Rate

Average Reproduction Rate =
AVERAGE(OWID_Compact[reproduction_rate])

9) Average Last 10 Vaccination Values

10) Average New Tests Smoothed

```
Average New Tests Smoothed =
AVERAGE(OWID_Compact[new_tests_smoothed])
```

11) Average New Tests Smoothed per Thousand

Average New Tests Smoothed per Thousand =
AVERAGE(OWID_Compact[new_tests_smoothed_per_thousand])

12) Average Positive Rate

```
Average Positive Rate =
AVERAGE(OWID_Compact[positive_rate])
```

13) Average Tests per Case

```
Average Tests per Case =
AVERAGE(OWID_Compact[tests_per_case])
```

14) Average Excess Mortality

```
Average Excess Mortality =
AVERAGE(OWID_Compact[excess_mortality])
```

15) Average Excess Mortality Cumulative

```
Average Excess Mortality Cumulative =
AVERAGE(OWID_Compact[excess_mortality_cumulative])
```

16) Average Excess Mortality Cumulative Absolute

```
Average Excess Mortality Cumulative Absolute =
AVERAGE(OWID_Compact[excess_mortality_cumulative_absolute])
```

17) Average Excess Mortality Cumulative per Million

```
Average Excess Mortality Cumulative per Million =
AVERAGE(OWID_Compact[excess_mortality_cumulative_per_million])
```

D) Epidemiological Ratios and Composite indicators

1) Case Fatality Rate

Measures the proportion of confirmed COVID-19 cases that resulted in death, providing a basic mortality rate.

```
Case Fatality Rate =
DIVIDE(
SUM(OWID_Compact[total_deaths]),
SUM(OWID_Compact[total_cases])
)
```

2) Vaccination vs Case Ratio

Compares vaccination coverage to new case incidence, suggesting whether high immunization correlates with lower infection rates.

Vaccination vs Case Ratio =

DIVIDE([Average People Fully Vaccinated per Hundred], [Average New Cases Smoothed per Million])

3) Stringency Effectiveness

Evaluates the relationship between government restrictions and new case trends; higher ratios may imply more effective containment.

```
Stringency Effectiveness =
DIVIDE(
    [Average Stringency Index],
    [Average New Cases Smoothed per Million]
)
```

4) Pandemic Efficiency Score

Combines vaccination coverage, test positivity, mortality, and testing intensity into a single index to assess pandemic management quality.

```
Pandemic Efficiency Score =
VAR Vaccination = DIVIDE([Average People Fully Vaccinated per Hundred], 100)
VAR Positivity = 1 - DIVIDE([Average Positive Rate], 0.2) // peor si >20%
VAR Mortality = 1 - DIVIDE([Average New Deaths per Million], 20) // peor si >20
muertes/millón
VAR Testing = DIVIDE([Average Tests per Case], 10) // mejor si >10
RETURN
100 * DIVIDE(
    Vaccination + Positivity + Mortality + Testing,
    4
)
```

E) Ranking by Metric

These measures rank countries based on key health, socioeconomic, and pandemic performance metrics.

1) Rank by Avg Daily Cases

```
Rank by Avg Daily Cases =
RANKX(
ALL(OWID_Compact[Country]),
[Average New Cases Smoothed],
,
DESC
```

2) Rank by Avg Daily Deaths per Million

```
Rank by Avg Daily Deaths per Million =
```

```
RANKX(
    ALL(OWID_Compact[Country]),
    [Average Daily Deaths per Million],
    ,
    DESC
)
```

3) Rank by Total Vaccinations

```
Rank by Total Vaccinations =
RANKX(
    ALL(OWID_Compact[Country]),
    CALCULATE(SUM(OWID_Compact[new_vaccinations_smoothed])),
    ,
    DESC
)
```

4) Rank by Hospital Capacity

```
Rank by Hospital Capacity =
RANKX(
    ALL(OWID_Compact[Country]),
    CALCULATE(AVERAGE(OWID_Compact[hospital_beds_per_thousand])),
    ,
    DESC
)
```

5) Rank by GDP per Capita

```
Rank by GDP per Capita =
RANKX(
    ALL(OWID_Compact[Country]),
    CALCULATE(AVERAGE(OWID_Compact[gdp_per_capita])),
    ,
    DESC
)
```

6) Rank by Population

```
Rank by Population =
RANKX(
    ALL(OWID_Compact[Country]),
    CALCULATE(SUM(OWID_Compact[population])),
    ,
    DESC
)
```

F) Conditional Formating / Color Logic

Used to assign color indicators in visual tables based on whether values have increased or decreased compared to the previous year.

1) Color Avg. Daily Cases per Million

```
Color Avg. Daily Cases per Million =
IF(
    [Avg. Daily Cases per Million] > [Avg. Daily Cases per Million LY],
    1,
    0
)
```

2) Color Avg. Daily Deaths per Million

```
Color Avg. Daily Deaths per Million =
IF(
    [Avg. Daily Deaths per Million] > [Avg. Daily Deaths per Million LY],
    1,
    0
)
```

3) Color Total Cases

```
Color Total Cases =
IF(
 [Total Cases] > [Total Cases LY],
 1,
 0
)
```

4) Color Total Tests

5) Color Total Vaccinations

```
Color Total Vaccinations =
IF(
    [Total Vaccinations] > [Total Vaccinations LY],
    0,
    1
)
```

1.2 OWID Dataset vaccinations manufacturer.csv:

A) Aggregated and Comparative Measures

These measures summarize or compare the total number of administered vaccine doses by vaccine or technology type.

1) Sum of Vaccinations

Calculates the latest cumulative dose total per country and vaccine to compare absolute values over time.

```
Sum of Vaccinations =
SUMX(
    SUMMARIZE(
        OWID_Vacc,
        OWID_Vacc[country],
        OWID_Vacc[vaccine],
        "MaxVac", MAX(OWID_Vacc[total_vaccinations])
    ),
    [MaxVac]
)
```

2) % Vaccination Share (by vaccine)

Shows the percentage contribution of a specific vaccine to the total doses within the current filter context.

```
% Vaccination Share =
DIVIDE(
    [Sum of Vaccinations],
    CALCULATE([Sum of Vaccinations], REMOVEFILTERS(OWID_Vacc[vaccine]))
)
```

3) % Vaccination Share (by technology)

Similar to the previous one, but based on the vaccine technology category (e.g., mRNA, viral vector).

```
% Vaccination Share =
DIVIDE(
    [Sum of Vaccinations],
    CALCULATE([Sum of Vaccinations], REMOVEFILTERS(OWID_Vacc[vaccine]))
)
```

B) Ranking and Daily Intensity

Measures designed to identify leading vaccines and quantify their daily use.

1) Vaccine Rank

Ranks vaccines by total doses administered within the filter context; useful to identify the most used vaccine per country.

```
Vacuna Rank =
RANKX(
    ALL(OWID_Vacc[vaccine]),
    [Sum of Vaccinations],
    ,
    DESC
)
```

2) Average Daily Doses

Calculates the average number of daily doses administered for each vaccine or technology.

Average Daily Doses =
AVERAGE(OWID_Vacc[Daily Doses])

C) Log-Transformed Scaling

Useful for visualization when data is highly skewed.

1) Log Vaccinations

Applies a log base 10 transformation to total doses to improve readability and comparative scaling across vaccines.

```
Log Vaccinations =
VAR dosis = [Sum of Vaccinations]
RETURN
IF(
     dosis <= 0,
     BLANK(), -- evita errores con log(0)
     LOG(dosis, 10)
)</pre>
```

1.3 VAERS Dataset data.csv:

A) Averages for Clinical Insights

These measures compute the average of key continuous variables for severity and timing analysis.

1) Average Age

Calculates the mean age of patients who reported adverse events.

```
Average Age =
AVERAGE(VAERS_Data[AGE_YRS])
```

2) Average Days VAX to Symptoms

Measures the average delay between vaccination and the onset of symptoms.

```
Average Days VAX to Symptoms =
AVERAGE(VAERS_Data[NUMDAYS])
```

3) Average Days Vax to Death

Computes the average time from vaccination to reported death.

```
Average Days Vax to Death =
AVERAGE(VAERS_Data[Days from Vaccination to Death])
```

4) Average Days Onset to Death

Tracks the average number of days between symptom onset and death.

```
Average Days Onset to Death =
AVERAGE(VAERS_Data[Days from Onset to Death])
```

5) Average Hospital Days

Indicates the average duration of hospitalization for reported cases.

```
Average Hospital Days =
AVERAGE(VAERS_Data[HOSPDAYS])
```

B) Death-Related Metrics

These measures count or calculate the proportion of deaths within specific clinical or reporting conditions.

1) Total Deaths Reported

Counts all reported deaths in the VAERS dataset.

```
Total Deaths Reported =
CALCULATE(
    COUNTROWS(VAERS_Data),
    VAERS_Data[DIED] = "Y"
)
```

2) % Deaths Hospitalized

Percentage of hospitalized patients who died.

```
% Deaths Hospitalized =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_Data),
        VAERS_Data[HOSPITAL] = "Y",
        VAERS_Data[DIED] = "Y"
    ),
    CALCULATE(COUNTROWS(VAERS_Data),
        VAERS_Data[HOSPITAL] = "Y"
    )
)
```

3) % Deaths with Birth Defect

Percentage of death cases that also reported a birth defect.

```
% Deaths with Birth Defect =
DIVIDE(
CALCULATE(COUNTROWS(VAERS_Data),
```

```
VAERS_Data[BIRTH_DEFECT] = "Y",
VAERS_Data[DIED] = "Y"
),
CALCULATE(COUNTROWS(VAERS_Data),
VAERS_Data[BIRTH_DEFECT] = "Y"
)
```

4) % Deaths with ER Visit

Percentage of patients who died after visiting the emergency room.

```
% Deaths with ER Visit =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_Data),
        VAERS_Data[ER_VISIT] = "Y",
        VAERS_Data[DIED] = "Y"
    ),
    CALCULATE(COUNTROWS(VAERS_Data),
        VAERS_Data[ER_VISIT] = "Y"
    )
)
```

5) % Deaths

Overall percentage of cases in the dataset that resulted in death.

```
% Deaths =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_Data), VAERS_Data[DIED] = "Y"),
    COUNTROWS(VAERS_Data)
)
```

C) Disability and Hospitalization Rates

These measures indicate the proportion of adverse events that led to long-term disability or hospitalization.

1) % Disabled

Percentage of reports indicating the patient suffered a lasting disability.

```
% Disabled =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_Data), VAERS_Data[DISABLE] = "Y"),
    COUNTROWS(VAERS_Data)
)
```

2) % Hospitalized

Percentage of reported cases that required hospitalization.

```
% Hospitalized =
DIVIDE(
     CALCULATE(COUNTROWS(VAERS_Data), VAERS_Data[HOSPITAL] = "Y"),
     COUNTROWS(VAERS_Data)
```

1.4 VAERS Dataset symptoms:

A) Symptom-Based Severity Rates

These measures assess the proportion of cases involving disability, hospitalization, or death for each symptom.

1) Disability by Symptom (%)

Percentage of symptom reports where the patient developed a disability.

```
Disability by Symptom (%) =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_Symptoms), VAERS_Data[DISABLE] = "Y"),
    COUNTROWS(VAERS_Symptoms)
)
```

2) Hospitalization by Symptom (%)

Percentage of symptom reports that resulted in hospitalization.

```
Hospitalization by Symptom (%) =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_Symptoms), VAERS_Data[HOSPITAL] = "Y"),
    COUNTROWS(VAERS_Symptoms)
)
```

3) Mortality by Symptom (%)

Percentage of symptom reports associated with a fatal outcome.

```
Mortality by Symptom (%) =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_Symptoms),(VAERS_Data[DIED]) = "Y"),
    COUNTROWS(VAERS_Symptoms)
)
```

B) Symptom Counts

Basic measures for counting total symptoms and deaths among those symptoms.

1) Symptom Count

Total number of individual symptom reports.

Symptom Count = COUNTROWS(VAERS_Symptoms)

2) Symptom Death Count

Number of symptom entries where the patient died.

```
Symptom Death Count =
CALCULATE(
    COUNTROWS(VAERS_Symptoms),
    VAERS_Data[DIED] = "Y"
)
```

1.5 VAERS Dataset vax.csv:

A) Dose Distribution Metrics

Measures to understand how many individuals received one or multiple doses.

1) Average Number of Doses

Average number of doses received by individuals who reported an adverse event.

```
Average Number of Doses =
AVERAGE(
     VAERS_VAX[VAX_DOSE_SERIES])
```

2) % Only First Dose

Percentage of patients who received only the first dose of the vaccine.

```
% Only First Dose =
DIVIDE(
    CALCULATE(COUNTROWS(VAERS_VAX), VALUE(VAERS_VAX[VAX_DOSE_SERIES]) = 1),
    COUNTROWS(VAERS_VAX)
)
```

3) % Up to Second Dose

Percentage of individuals who received either one or two doses (no booster).

```
% Up to Second Dose =
DIVIDE(
        CALCULATE(COUNTROWS(VAERS_VAX), VALUE(VAERS_VAX[VAX_DOSE_SERIES]) <= 2),
        COUNTROWS(VAERS_VAX)
)
```

B) Aggregated Total and Log-Transformed Scaling

Basic SUM to quantify the total dose count and used for scaling charts when the data has outliers or large ranges.

1) Total VAERS Vaccinations

Sum of all doses administered as reported in VAERS events.

```
Total VAERS Vaccinations =
```

UM(VAERS_VAX[VAX_DOSE_SERIES]

2) Log VAERS Vaccinations

Applies a log10 transformation to the total doses to improve visualization scale.

```
Log VAERS Vaccinations =
VAR dosis = [Total VAERS Vaccinations]
RETURN
IF(
     dosis <= 0,
     BLANK(), -- evita errores con log(0)
     LOG(dosis, 10)
)</pre>
```